Solution structure and pressure response of thioredoxin-1 of Plasmodium falciparum

PLoS One. 2024 Apr 18;19(4):e0301579. doi: 10.1371/journal.pone.0301579. eCollection 2024.

Abstract

We present here the solution structures of the protein thioredoxin-1 from Plasmodium falciparum (PfTrx-1), in its reduced and oxidized forms. They were determined by high-resolution NMR spectroscopy at 293 K on uniformly 13C-, 15N-enriched, matched samples allowing to identification of even small structural differences. PfTrx-1 shows an α/β-fold with a mixed five-stranded β-sheet that is sandwiched between 4 helices in a β1 α1 β2 α2 β3 α3 β4 β5 α4 topology. The redox process of the CGPC motif leads to significant structural changes accompanied by larger chemical shift changes from residue Phe25 to Ile36, Thr70 to Thr74, and Leu88 to Asn91. By high-field high-pressure NMR spectroscopy, rare conformational states can be identified that potentially are functionally important and can be used for targeted drug development. We performed these experiments in the pressure range from 0.1 MPa to 200 MPa. The mean combined, random-coil corrected B1* values of reduced and oxidized thioredoxin are quite similar with -0.145 and -0.114 ppm GPa-1, respectively. The mean combined, random-coil corrected B2* values in the reduced and oxidized form are 0.179 and 0.119 ppm GPa-2, respectively. The mean ratios of the pressure coefficients B2/B1 are -0.484 and -0.831 GPa-1 in the reduced and oxidized form respectively. They differ at some points in the structure after the formation of the disulfide bond between C30 and C33. The thermodynamical description of the pressure dependence of chemical shifts requires the assumption of at least three coexisting conformational states of PfTrx-1. These three conformational states were identified in the reduced as well as in the oxidized form of the protein, therefore, they represent sub-states of the two main oxidation states of PfTrx-1.

MeSH terms

  • Amino Acid Sequence
  • Magnetic Resonance Spectroscopy
  • Oxidation-Reduction
  • Plasmodium falciparum* / metabolism
  • Protein Structure, Secondary
  • Thioredoxins* / metabolism

Substances

  • Thioredoxins

Grants and funding

Deutsche Forschungsgemeinschaft (KA647/22-1) Funding of HRK The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.