Bistable Electrochromic Ionogels via Supramolecular Interactions for Energy-Efficient Displays

Adv Mater. 2024 Apr 18:e2403499. doi: 10.1002/adma.202403499. Online ahead of print.

Abstract

Bistable electrochromic (EC) materials and systems offer significant potential for building decarbonization through their optical modulation and energy efficiency. However, challenges such as limited design strategies and bottlenecks in cost, fabrication, and color have hindered the full commercialization of energy-saving EC windows and displays, with few materials achieving true bistability. Herein, a novel strategy for designing bistable electrochromic materials is proposed by leveraging supramolecular interactions. These interactions facilitate reversible color transitions, stabilize the colored structure, and enable spatial confinement to inhibit diffusion, thereby achieving bistable electrochromism. The mechanisms and materials underlying these unconventional electrochromic systems are substantiated through detailed characterization. This strategy enables the preparation of low-cost and sustainable transparent electrochromic displays with high performance. Notably, the display information remains clearly visible for more than 2 hours without consuming energy. Involving biomass materials and removable device structures also enhances the sustainability and scalability of EC technology applications and development. Our results demonstrate the crucial role of supramolecular chemistry in the development of cutting-edge materials for applications such as energy-saving smart windows. This article is protected by copyright. All rights reserved.

Keywords: biomass electrochromic materials; displays; ionic gel; smart window; supramolecular interactions.