Pd8(PDip)6: Cubic, Unsaturated, Zerovalent

Adv Sci (Weinh). 2024 Apr 18:e2400699. doi: 10.1002/advs.202400699. Online ahead of print.

Abstract

Atomically precise nanoclusters hold promise for supramolecular assembly and (opto)electronic- as well as magnetic materials. Herein, this work reports that treating palladium(0) precursors with a triphosphirane affords strongly colored Pd8(PDip)6 that is fully characterized by mass spectrometry, heteronuclear and Cross-Polarization Magic-Angle Spinning (CP-MAS) NMR-, infrared (IR), UV-vis, and X-ray photoelectron (XP) spectroscopies, single-crystal X-Ray diffraction (sc-XRD), mass spectrometry, and cyclovoltammetry (CV). This coordinatively unsaturated 104-electron Pd(0) cluster features a cubic Pd8-core, µ4-capping phosphinidene ligands, and is air-stable. Quantum chemical calculations provide insight to the cluster's electronic structure and suggest 5s/4d orbital mixing as well as minor Pd─P covalency. Trapping experiments reveal that cluster growth proceeds via insertion of Pd(0) into the triphosphirane. The unsaturated cluster senses ethylene and binds isocyanides, which triggers the rearrangement to a tetrahedral structure with a reduced frontier orbital energy gap. These experiments demonstrate facile cluster manipulation and highlight non-destructive cluster rearrangement as is required for supramolecular assembly.

Keywords: atomically precise; cluster; cube; phosphinidene; unsaturation.