Polydopamine-Based Resveratrol-Hyaluronidase Nanomedicine Inhibited Pancreatic Cancer Cell Invasive Phenotype in Hyaluronic Acid Enrichment Tumor Sphere Model

ACS Pharmacol Transl Sci. 2024 Jan 15;7(4):1013-1022. doi: 10.1021/acsptsci.3c00304. eCollection 2024 Apr 12.

Abstract

The dense storm microenvironment formed by an excessively cross-linked extracellular matrix, such as hyaluronic acid and collagens, serves as a major barrier that prevents drugs from reaching the deeper tumor. Current traditional two-dimensional (2D) cultures are not capable of modeling this drug delivery barrier in vitro. Thus, tumor spheroids have become increasingly important in cancer research due to their three-dimensional structure. Currently, various methods have been developed to construct tumor spheroids. However, there are still challenges, such as lengthy construction time, complex composition of added growth factors, and high cultivation costs. To address this technical bottleneck, our study combined the GelMA hydrogel system to develop a rapid and high-yield method for tumor spheroids generation. Additionally, we proposed an evaluation scheme to assess the effects of drugs on tumor spheroids. Building on the hyaluronic acid-rich pathological tumor microenvironment, we constructed a resveratrol-loaded nano-drug delivery system with tumor stroma modulation capability and used a three-dimensional (3D) tumor sphere model to simulate in vivo tumor conditions. This process was utilized to completely evaluate the ability of the nano-drug delivery system to enhance the deep penetration of resveratrol in the tumor microenvironment, providing new insights into future oncology drug screening, efficacy assessment, and drug delivery methods.