Brain tumor grading diagnosis using transfer learning based on optical coherence tomography

Biomed Opt Express. 2024 Mar 13;15(4):2343-2357. doi: 10.1364/BOE.513877. eCollection 2024 Apr 1.

Abstract

In neurosurgery, accurately identifying brain tumor tissue is vital for reducing recurrence. Current imaging techniques have limitations, prompting the exploration of alternative methods. This study validated a binary hierarchical classification of brain tissues: normal tissue, primary central nervous system lymphoma (PCNSL), high-grade glioma (HGG), and low-grade glioma (LGG) using transfer learning. Tumor specimens were measured with optical coherence tomography (OCT), and a MobileNetV2 pre-trained model was employed for classification. Surgeons could optimize predictions based on experience. The model showed robust classification and promising clinical value. A dynamic t-SNE visualized its performance, offering a new approach to neurosurgical decision-making regarding brain tumors.