Parametric analysis of craniocerebral injury mechanism in pedestrian traffic accidents based on finite element methods

Chin J Traumatol. 2024 Mar 30:S1008-1275(24)00037-3. doi: 10.1016/j.cjtee.2024.03.010. Online ahead of print.

Abstract

Purpose: The toughest challenge in pedestrian traffic accident identification lies in ascertaining injury manners. This study aimed to systematically simulate and parameterize 3 types of craniocerebral injury including impact injury, fall injury, and run-over injury, to compare the injury response outcomes of different injury manners.

Methods: Based on the Total Human Model for Safety (THUMS) and its enhanced human model THUMS-hollow structures, a total of 84 simulations with 3 injury manners, different loading directions, and loading velocities was conducted. Von Mises stress, intracranial pressure, maximum principal strain, cumulative strain damage measure, shear stress, and cranial strain were employed to analyze the injury response of all areas of the brain. To examine the association between injury conditions and injury consequences, correlation analysis, principal component analysis, linear regression, and stepwise linear regression were utilized.

Results: There is a significant correlation observed between each criterion of skull and brain injury (p < 0.01 in all Pearson correlation analysis results). A 2-phase increase of cranio-cerebral stress and strain as impact speed increases. In high-speed impact (> 40 km/h), the Von Mises stress on the skull was with a high possibility exceed the threshold for skull fracture (100 MPa). When falling and making temporal and occipital contact with the ground, the opposite side of the impacted area experiences higher frequency stress concentration than contact at other conditions. Run-over injuries tend to have a more comprehensive craniocerebral injury, with greater overall deformation due to more adequate kinetic energy conduction. The mean value of maximum principal strain of brain and Von Mises stress of cranium at run-over condition are 1.39 and 403.8 MPa, while they were 1.31, 94.11 MPa and 0.64, 120.5 MPa for the impact and fall conditions, respectively. The impact velocity also plays a significant role in craniocerebral injury in impact and fall loading conditions (the p of all F test < 0.05). A regression equation of the craniocerebral injury manners in pedestrian accidents was established.

Conclusion: The study distinguished the craniocerebral injuries caused in different manners, elucidated the biomechanical mechanisms of craniocerebral injury, and provided a biomechanical foundation for the identification of craniocerebral injury in legal contexts.

Keywords: Biomechanism; Craniocerebral injury; Finite element; Forensic practice; Injury mechanism; Traffic accident.