Investigation of electronic, ferroelectric and local electrical conduction behavior of RF sputtered BiFeO3thin films

Nanotechnology. 2024 May 1;35(29). doi: 10.1088/1361-6528/ad3fc6.

Abstract

Most of the applied research on BiFeO3(BFO) focuses on magnetoelectric and spintronic applications. This calls for a detailed grasp of multiferroic and conduction properties. BFO thin films with (100) epitaxial growth has been deposited on a LaNiO3(LNO) buffered Pt/Ti/SiO2/Si(100) substrate using RF magnetron sputtering. The film formed at 15 mTorr, 570 °C, and with Ar/O24:1 had a reasonably high degree of (100)-preferential orientation, the least surface roughness, and a densely packed structure. We obtained ferroelectric loops with strong polarization (150μC cm-2). The leakage current density is as low as 10-2A cm-2at 100 kV cm-1, implying that space-charge-limited bulk conduction (SCLC) was the primary conduction channel for carriers within BFO films. Local electrical conduction behavior demonstrates that at lower voltages, the grain boundary dominates electrical conduction and is linked to the displacement of oxygen vacancies in the grain boundary under external electric fields. We hope that a deeper understanding of the conduction mechanism will help integrate BFO into viable technologies.

Keywords: conduction properties; electronic properties; ferroelectric; multiferroics; thin films.