[Components Characteristic and Source Apportionment of Fine Particulate Matter in Transition Period of Heating Season in Xi'an with High Time Resolution]

Huan Jing Ke Xue. 2024 May 8;45(5):2571-2580. doi: 10.13227/j.hjkx.202306181.
[Article in Chinese]

Abstract

Influenced by heating, the concentration of atmospheric fine particulate matter (PM2.5) rises in autumn and winter in northern cities. In this study, Q-ACSM, AE33, and Xact 625 were used to carry out online monitoring of PM2.5 chemical components with high time resolution in Xi'an from October 25 to November 17, 2019, to analyze the characteristics of PM2.5 pollution during the transition period of the heating season. Additionally, we analyzed the sources of PM2.5 in combination with the positive matrix factorization model. The results showed that the average PM2.5 concentration during the observation period was (78.3 ± 38.5) μg·m-3, and the main chemical components were organic matter (OA), secondary inorganic ions (SIA), and dust, which accounted for 38.7%, 31.6%, and 21.2%, respectively. The average concentrations of sulfate, nitrate, and ammonium were (4.0 ± 3.1), (14.9 ± 13.7), and (5.8 ± 4.8) μg·m-3, and the average concentrations of the major metals potassium, calcium, and iron were (1.0 ± 0.4), (1.5 ± 1.1), and (1.4 ± 0.9) μg·m-3. Black carbon, chloride ions, and trace elements contributed relatively little to PM2.5 (5.7%, 1.3%, and 1.5%, respectively). In the pollution development and maintenance stage, the concentration of OA and SIA increased by 137.7% to 537.0%, whereas in the pollution dissipation stage, only the concentration of dust gradually increased. The source apportionment results showed that secondary sources, biomass burning, dust, vehicle emission, industrial emission, and coal combustion were the main sources of PM2.5 during the observation period, contributing 29.1%, 21.1%, 15.3%, 12.9%, 11.4%, and 10.2%, respectively. The contribution rate of secondary sources and biomass burning was higher in the pollution development and maintenance stage, and dust was higher in the pollution dissipation stage.

Keywords: atmospheric fine particulate matter; components characteristics; formation mechanism; pollution causes; source apportionment.

Publication types

  • English Abstract