Quantitative Real-Time Analysis of Living Materials by Stimulated Raman Scattering Microscopy

Anal Chem. 2024 Apr 30;96(17):6540-6549. doi: 10.1021/acs.analchem.3c03736. Epub 2024 Apr 15.

Abstract

Composite materials built in part from living organisms have the potential to exhibit useful autonomous, adaptive, and self-healing behavior. The physicochemical, biological, and mechanical properties of such materials can be engineered through the genetic manipulation of their living components. Successful development of living materials will require not only new methods for design and preparation but also new analytical tools that are capable of real-time noninvasive mapping of chemical compositions. Here, we establish a strategy based on stimulated Raman scattering microscopy to monitor phosphatase-catalyzed mineralization of engineered bacterial films in situ. Real-time label-free imaging elucidates the mineralization process, quantifies both the organic and inorganic components of the material as functions of time, and reveals spatial heterogeneity at multiple scales. In addition, we correlate the mechanical performance of films with the extent of mineralization. This work introduces a promising strategy for quantitatively analyzing living materials, which should contribute to the accelerated development of such materials in the future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Nonlinear Optical Microscopy* / methods
  • Phosphoric Monoester Hydrolases / metabolism
  • Spectrum Analysis, Raman / methods
  • Time Factors

Substances

  • Phosphoric Monoester Hydrolases