Mn-Based Mullites for Environmental and Energy Applications

Adv Mater. 2024 Apr 15:e2312685. doi: 10.1002/adma.202312685. Online ahead of print.

Abstract

Mn-based mullite oxides AMn2O5 (A = lanthanide, Y, Bi) is a novel type of ternary catalyst in terms of their electronic and geometric structures. The coexistence of pyramid Mn3+-O and octahedral Mn4+-O makes the d-orbital selectively active toward various catalytic reactions. The alternative edge- and corner-sharing stacking configuration constructs the confined active sites and abundant active oxygen species. As a result, they tend to show superior catalytic behaviors and thus gain great attention in environmental treatment and energy conversion and storage. In environmental applications, Mn-based mullites have been demonstrated to be highly active toward low-temperature oxidization of CO, NO, volatile organic compounds (VOCs), etc. Recent research further shows that mullites decompose O3 and ozonize VOCs from -20 °C to room temperature. Moreover, mullites enhance oxygen reduction reactions (ORR) and sulfur reduction reactions (SRR), critical kinetic steps in air-battery and Li-S batteries, respectively. Their distinctive structures also facilitate applications in gas-sensitive sensing, ionic conduction, high mobility dielectrics, oxygen storage, piezoelectricity, dehydration, H2O2 decomposition, and beyond. A comprehensive review from basic physicochemical properties to application certainly not only gains a full picture of mullite oxides but also provides new insights into designing heterogeneous catalysts.

Keywords: Mn‐based mullites; energy storage and conversion; pollutant gaseous treatment; room temperature catalysis; sensor materials.

Publication types

  • Review