Elucidating the catalytic mechanisms of O2 generation by [Mn2(μ-O)2(terpy)2(OH2)2]3+ using DFT calculations: a focus on ClO- as oxidant

Dalton Trans. 2024 Apr 30;53(17):7580-7589. doi: 10.1039/d4dt00734d.

Abstract

The experimentally reported Mn(IV)Mn(III) complex [Mn2(μ-O)2(terpy)2(OH2)2]3+ has been observed catalyzing O2 generation with oxidants like ClO- and HSO5-. Previous mechanistic studies primarily focused on O2 generation with HSO5-, concluding that Mn(IV)Mn(III) acts as a catalyst, generating a Mn(IV)Mn(IV)-oxyl species as a key intermediate responsible for O-O bond formation. This computational study employs DFT calculations to investigate whether the catalytic generation of O2 using ClO- follows the same mechanism previously identified with HSO5- as the oxidant, or if it proceeds through an alternate pathway. To this end, we explored multiple pathways using ClO- as the oxidant. Interestingly, our findings confirm that in the case of ClO- as the oxidant, similar to what was observed with HSO5-, the Mn(IV)Mn(IV)-oxyl species indeed plays a crucial role in driving the catalytic evolution of O2 with the potential formation of the binuclear complexes Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH during the reaction. These complexes are reactive in producing O2, with activation free energies of 15.9 and 14.3 kcal mol-1, respectively. However, our calculations revealed that the Mn(IV)Mn(IV)-oxyl complex is significantly more reactive in producing O2 than Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH, with a lower free energy barrier of 8.1 kcal mol-1. Consequently, even though Mn(IV)Mn(IV)-oxyl is predicted to be present in much lower concentrations than Mn(IV)Mn(IV)-oxy and Mn(IV)Mn(IV)-OH, it emerges as the species acting as the active catalyst for catalytic O2 generation. This study enhances our knowledge of high oxidation state (+3 and +4) manganese chemistry, highlighting its key role in catalysis and paving the way for more efficient Mn-based catalysts with broad applications.