Characterization of rhizospheric fungi and their in vitro antagonistic potential against myco-phytopathogens invading Macrotyloma uniflorum plants

Int Microbiol. 2024 Apr 15. doi: 10.1007/s10123-024-00520-y. Online ahead of print.

Abstract

Microorganisms have become more resistant to pesticides, which increases their ability to invade and infect crops resulting in decreased crop productivity. The rhizosphere plays a crucial role in protecting plants from harmful invaders. The purpose of the study was to investigate the antagonistic efficiency of indigenous rhizospheric fungal isolates against phytopathogens of M. uniflorum plants so that they could be further used as potent Biocontrol agents. Thirty rhizospheric fungal isolates were collected from the roots of the Macrotyloma uniflorum plant and initially described morphologically for the present study. Further, in vitro tests were conducted to evaluate the antifungal activity of these strains against four myco-phytopathogens namely Macrophamina phaseolina, Phomopsis sp. PhSFX-1, Nigrospora oryzae, and Boeremia exigua. These pathogens are known to infect the same crop plant, M. uniflorum, and cause declines in crop productivity. Fifteen fungal strains out of the thirty fungal isolates showed some partial antagonistic activity against the myco-phytopathogens. The potent fungal isolates were further identified using molecular techniques, specifically based on the internal transcribed spacer (ITS) region sequencing. Penicillium mallochii, Cladosporium pseudocladosporioides, Aspergillus chevalieri, Epicoccum nigrum, Metarhizium anisopliae, and Mucor irregularis were among the strains that were identified. These potent fungal strains showed effective antagonistic activity against harmful phytopathogens. Current findings suggest that these strains may be taken into consideration as synthetic fungicides which are frequently employed to manage plant diseases alternatives.

Keywords: Antagonist activity; Bio-control agents; Phytopathogens; Rhizosphere fungi.