Sustainable approaches for removing toxic heavy metal from contaminated water: A comprehensive review of bioremediation and biosorption techniques

Chemosphere. 2024 Apr 12:357:141933. doi: 10.1016/j.chemosphere.2024.141933. Online ahead of print.

Abstract

In this comprehensive study, highlights emerging environmentally friendly methods to eliminating hazardous heavy metals from contaminated water, with an emphasis on bioremediation and biosorption. Breakthroughs, such as the combination of biological remediation and nanotechnology to improve the elimination of metals effectiveness and the use of genetically modified microbes for targeted pollutant breakdown. Developing biosorption materials made from agricultural waste and biochar, this indicates interesting areas for future research and emphasizes the necessity of sustainable practices in tackling heavy metal contamination in water systems. There seems to be a surge in enthusiasm for the utilization of biological remediation and biosorption methods as sustainable and viable options for eliminating heavy metals from contaminated water in the past couple of decades. The present review intends to offer an in-depth review of the latest understanding and advances in the discipline of biological remediation methods like bioaccumulation, biofiltration, bio-slurping, and bio-venting. Biosorption is specifically explained and includes waste biomass as biosorbent with the removal mechanisms and the hindrances caused in the process are detailed. Advances in biosorption like microbes as biosorbents and the mechanism involved in it. Additionally, novel enhancement techniques like immobilization, genetic modification, and ultrasound-assisted treatment in microbial sorbent are clarified. However, the review extended with analyzing the future advances in the overall biological methods and consequences of heavy metal pollution.

Keywords: Biosorption; Heavy metal; Pollution; Remediation; Wastewater.