Barcode lipids for absolute quantitation of liposomes in ocular tissues

J Control Release. 2024 Apr 16:370:1-13. doi: 10.1016/j.jconrel.2024.04.023. Online ahead of print.

Abstract

Lipid-based drug formulations are promising systems for improving delivery of drugs to ocular tissues, such as retina. To develop lipid-based systems further, an improved understanding of their pharmacokinetics is required, but high-quality in vivo experiments require a large number of animals, raising ethical and economic questions. In order to expedite in vivo kinetic testing of lipid-based systems, we propose a barcode approach that is based on barcoding liposomes with non-endogenous lipids. We developed and evaluated a liquid-chromatography-mass spectrometry method to quantify many liposomes simultaneously in aqueous humor, vitreous, and neural retina at higher than ±20% precision and accuracy. Furthermore, we showed in vivo suitability of the method in pharmacokinetic evaluation of six different liposomes after their simultaneous injection into the rat vitreal cavity. We calculated pharmacokinetic parameters in vitreous and aqueous humor, quantified liposome concentrations in the retina, and quantitated retinal distribution of the liposomes in the rats. Compared to individual injections of the liposome formulations, the barcode-based study design enabled reduction of animal numbers from 72 to 12. We believe that the proposed approach is reliable and will reduce and refine ocular pharmacokinetic experiments with liposomes and other lipid-based systems.

Keywords: Drug delivery; In vivo; Intravitreal injection; LC-MS; Liposomes; Ocular; Pharmacokinetics; Retinal bioavailability.