Schiff base functionalized dialdehyde starch for enhanced removal of Cu (II): Preparation, performances, DFT calculations

Int J Biol Macromol. 2024 Apr 12;268(Pt 1):131424. doi: 10.1016/j.ijbiomac.2024.131424. Online ahead of print.

Abstract

Dialdehyde starch modified by 2-hydrazinopyridine (HYD-DAS) based on the reaction of dialdehyde starch (DAS) and 2-hydrazinopyridine was synthesized and characterized by FT-IR spectra, element analysis and SEM. HYD-DAS can efficiently adsorb Cu (II) ion to demonstrate visual color changes from yellow to dark brown in aqueous solutions. The influence on HYD-DAS to Cu (II) adsorption including pH value of solution, isotherm, kinetics, thermodynamics and possible mechanism had also been examined. Batch experiments indicate that HYD-DAS's to Cu (II) adsorption reaches equilibrium within 250 min, and its adsorption capacity and rate are 195.75 mg/g and 98.63 %, respectively. Moreover, HYD-DAS to Cu (II) adsorption remains robust and underscoring after five cycles to exhibit good selectivity and reusability. Kinetics studies suggest the absorption process follows a quasi-second-order with isotherms aligning to the Langmuir monolayer model, and thermodynamics reveals that it is a spontaneous endothermic nature of adsorption. Based on the analyses of XPS and DFT calculations, a possible mechanism for HYD-DAS to Cu (II) adsorption is that Cu (II) combined with nitrogen atoms from Schiff base and hydrazine pyridine ring in HYD-DAS.

Keywords: Cu (II) adsorption; DFT calculations; Functionalized dialdehyde starch; Hydrazine pyridine; Schiff base; Visualization.