Efficient tunable white emission and multiple reversible photoluminescence switching in organic Tin(IV) chlorides via regulating the host lattice environment of antimony ions for multifunctional applications

J Colloid Interface Sci. 2024 Jul 15:666:560-571. doi: 10.1016/j.jcis.2024.04.052. Epub 2024 Apr 9.

Abstract

The host lattice environments of Sb3+ has a great influence on its photophysical properties. Here, we synthesized three zero-dimensional organic metal halides of (TPA)2SbCl5 (1), Sb3+-doped (TPA)SnCl5(H2O)·2H2O (Sb3+-2), and Sb3+-doped (TPA)2SnCl6 (Sb3+-3). Compared with the intense orange emission of 1, Sb3+-3 has smaller lattice distortion, thus effectively suppressing the exciton transformation from singlet to triplet self-trapped exciton (STE) states, which makes Sb3+-3 has stronger singlet STE emission and further bring a white emission with a photoluminescence quantum efficiency (PLQE) of 93.4%. Conversely, the non-emission can be observed in Sb3+-2 even though it has a similar [SbCl5]2- structure to 1, which should be due to its indirect bandgap characteristics and the effective non-radiative relaxation caused by H2O in the lattice. Interestingly, the non-emission of Sb3+-2 can convert into the bright emission of Sb3+-3 under TPACl DMF solution treatment. Meanwhile, the white emission under 315 nm excitation of Sb3+-3 can change into orange emission upon 365 nm irradiation, and the luminescence can be further quenched by the treatment of HCl. Therefore, a triple-mode reversible luminescence switch of off-onI-onII-off can be achieved. Finally, we demonstrated the applications of Sb3+-doped compounds in single-component white light illumination, latent fingerprint detection, fluorescent anti-counterfeiting, and information encryption.

Keywords: Host lattice environment; Multifunctional applications; Sb(3+)-doped; Sn(IV)-based metal halide; Tunable white emission.