Optimization of a Ge2Sb2Te5-Based Electrically Tunable Phase-Change Thermal Emitter for Dynamic Thermal Camouflage

Materials (Basel). 2024 Apr 3;17(7):1641. doi: 10.3390/ma17071641.

Abstract

Controlling infrared thermal radiations can significantly improve the environmental adaptability of targets and has attracted increasing attention in the field of thermal camouflage. Thermal emitters based on Ge2Sb2Te5 (GST) can flexibly change their radiation energy by controlling the reversible phase transition of GST, which possesses fast switching speed and low power consumption. However, the feasibility of the dynamic regulation of GST emitters lacks experimental and simulation verification. In this paper, we propose an electrically tunable thermal emitter consisting of a metal-insulator-metal plasmonic metasurface based on GST. Both optical and thermal simulations are conducted to optimize the structural parameters of the GST emitter. The results indicate that this emitter possesses large emissivity tunability, wide incident angle, polarization insensitivity, phase-transition feasibility, and dynamic thermal camouflage capability. Therefore, this work proposes a reliable optimization method to design viable GST-based thermal emitters. Moreover, it provides theoretical support for the practical application of phase-change materials in dynamic infrared thermal camouflage technology.

Keywords: Ge2Sb2Te5; dynamic thermal camouflage; phase-change materials; thermal emitter.