The Effect of SiO2 Particle Size on Crystallization Behavior and Space Charge Properties for SiO2/MMT/LDPE Composites

Materials (Basel). 2024 Mar 31;17(7):1605. doi: 10.3390/ma17071605.

Abstract

The matrix material used in this paper was low-density polyethene (LDPE), and the added particles selected were silicon oxide (SiO2) particles and montmorillonite (MMT) particles. The sizes of the SiO2 particles were 1 µm, 30 nm, and 100 nm, respectively; three kinds of SiO2/MMT/LDPE multi-component composites were prepared based on MMT/LDPE composites doped with MMT particles. The effect of the SiO2 particle size on the crystallization behavior and space charge properties of SiO2/MMT/LDPE composites was studied. The crystalline behaviors and crystallinity of the materials were analyzed. At the same time, the changes in the relative dielectric constant εr and loss factor tanδ for each material with the influence of frequency were studied, and the space charge accumulation, residual characteristics, and apparent charge mobility of each material were explored. The results show that the smaller the size of the added particles, the smaller the grain size and the clearer the grain outline for the multi-composite material. After adding 30 nm SiO2 particles, the crystallinity of the material increases significantly. The microstructure formed by the addition of 100 nm SiO2 particles effectively restricts molecular chain movement and makes it difficult to establish the polarization of the composite. The incorporation of large-size particles can reduce the proportion of the crystalline structure for the material as a whole, resulting in the formation of a new structure to promote charge transfer. Among the three kinds of SiO2 particles, the addition of 30 nm SiO2 particles can effectively suppress the space charge, and the composite material has the lowest residual space charge after depolarization. The addition of 100 nm SiO2 particles can cause the accumulation of many homopolar charges near the anode.

Keywords: crystallization behavior; different dimensions; electrical properties; inorganic filler; multicomponent composites.