Porous High-Entropy Oxide Anode Materials for Li-Ion Batteries: Preparation, Characterization, and Applications

Materials (Basel). 2024 Mar 28;17(7):1542. doi: 10.3390/ma17071542.

Abstract

High-entropy oxides (HEOs), as a new type of single-phase solid solution with a multi-component design, have shown great potential when they are used as anodes in lithium-ion batteries due to four kinds of effects (thermodynamic high-entropy effect, the structural lattice distortion effect, the kinetic slow diffusion effect, and the electrochemical "cocktail effect"), leading to excellent cycling stability. Although the number of articles on the study of HEO materials has increased significantly, the latest research progress in porous HEO materials in the lithium-ion battery field has not been systematically summarized. This review outlines the progress made in recent years in the design, synthesis, and characterization of porous HEOs and focuses on phase transitions during the cycling process, the role of individual elements, and the lithium storage mechanisms disclosed through some advanced characterization techniques. Finally, the future outlook of HEOs in the energy storage field is presented, providing some guidance for researchers to further improve the design of porous HEOs.

Keywords: Li-ion battery; anode; high-entropy oxide; porous material.

Publication types

  • Review