Thiophene-Based Covalent Triazine Frameworks as Visible-Light-Driven Heterogeneous Photocatalysts for the Oxidative Coupling of Amines

Molecules. 2024 Apr 5;29(7):1637. doi: 10.3390/molecules29071637.

Abstract

This study reports on a metal-free Covalent Triazine Framework (CTF) incorporating bithiophene structural units (TP-CTF) with a semicrystalline structure as an efficient heterogeneous photocatalyst under visible light irradiation. The physico-chemical properties and composition of this material was confirmed via different characterization solid-state techniques, such as XRD, TGA, CO2 adsorption and FT-IR, NMR and UV-Vis spectroscopies. The compound was synthesized through a solvothermal process and was explored as a heterogeneous photocatalyst for the oxidative coupling of amines to imines under visible light irradiation. TP-CTF demonstrated outstanding photocatalytic activity, with high conversion rates and selectivity. Importantly, the material exhibited exceptional stability and recyclability, making it a strong candidate for sustainable and efficient imine synthesis. The low bandgap of TP-CTF enabled the efficient absorption of visible light, which is a notable advantage for visible-light-driven photocatalysis.

Keywords: benzylamine coupling; covalent triazine frameworks; organic photocatalysis.