Construction of a Visible-Light-Response Photocatalysis-Self-Fenton Degradation System of Coupling Industrial Waste Red Mud to Resorcinol-Formaldehyde Resin

Molecules. 2024 Mar 28;29(7):1514. doi: 10.3390/molecules29071514.

Abstract

Heterogeneous photocatalysis-self-Fenton technology is a sustainable strategy for treating organic pollutants in actual water bodies with high-fluent degradation and high mineralization capacity, overcoming the limitations of the safety risks caused by adding external iron sources and hazardous chemicals in the homogeneous Fenton reaction and injecting high-intensity energy fields in photo-Fenton reaction. Herein, a photo-self-Fenton system based on resorcinol-formaldehyde (RF) resin and red mud (RM) was established to generate hydrogen peroxide (H2O2) in situ and transform into hydroxy radical (OH) for efficient degradation of tetracycline (TC) under visible light irradiation. The capturing experiments and electron spin resonance (ESR) confirmed that the hinge for the enhanced performance of this system is the superior H2O2 yield (499 μM) through the oxygen reduction process (ORR) of the two-step single-electron over the resin and the high concentration of OH due to activation effect of RM. In addition, the Fe2+/Fe3+ cycles are accelerated by photoelectrons to effectively initiate the photo-self-Fenton reaction. Finally, the possible degradation pathways were proposed via liquid chromatography-mass spectrometry (LC-MS). This study provides a new idea for environmental recovery in a waste-based heterogeneous photocatalytic self-Fenton system.

Keywords: antibiotic degradation; in situ H2O2 production; photocatalysis–self-Fenton; red mud; resorcinol–formaldehyde.