Changes in the Quality and Microflora of Yellowtail Seriola quinqueradiata Muscles during Cold Storage

Foods. 2024 Apr 1;13(7):1086. doi: 10.3390/foods13071086.

Abstract

We evaluated the changes in the quality and microflora of yellowtail flesh cold-stored until spoilage. Based on the sensory evaluation, odor palatability was deemed unacceptable for dark muscle (DM) and the dorsal part of the ordinary muscle (OD) after >10 days and 14 of storage, respectively. Log 7 CFU/g in DM as well as OD was obtained on days 10 (Aeromonas spp.) and 14 (Enterobacteriaceae and Pseudomonas spp.) of storage, whereas log 5 (Brocothrix thermosphacta) and 6 (H2S-producing bacteria) CFU/g in them were obtained on day 14 of storage. In these bacteria, the viable bacterial counts of Pseudomonas spp. and Aeromonas spp. in DM were significantly higher than those in OD only at some storage times. Amplicon sequencing revealed that in both muscles, Pseudomonas became predominant after storage, with greater than 90% recorded after more than 10 days of storage. The relative abundances of Acinetobacter, Unclassified Gammaproteobacter, and Shewanella were relatively high in both muscles after more than 10 days of storage; however, these values were less than 5%. Ethyl butyrate in the OD and DM and 2,3-butanedione in the OD were first detected on days 14 and 10 of storage, respectively. Acetoin in the OD increased by 81-fold after 14 days of storage and was significantly increased in the DM after more than 10 days compared with the amount detected pre-storage. Volatiles, such as (E)-2-pentenal in the OD and 1-pentanol in the DM, decreased and increased linearly, respectively, throughout the 14-day storage period. Altogether, these volatile components may cause quality deterioration due to spoilage and/or lipid oxidation during cold storage of the OD and DM.

Keywords: Pseudomonas; dark muscle; next generation sequencing; ordinary muscle; storage; volatiles.