Linear Capacitive Pressure Sensor with Gradient Architecture through Laser Ablation on MWCNT/Ecoflex Film

Polymers (Basel). 2024 Apr 2;16(7):962. doi: 10.3390/polym16070962.

Abstract

The practical application of flexible pressure sensors, including electronic skins, wearable devices, human-machine interaction, etc., has attracted widespread attention. However, the linear response range of pressure sensors remains an issue. Ecoflex, as a silicone rubber, is a common material for flexible pressure sensors. Herein, we have innovatively designed and fabricated a pressure sensor with a gradient micro-cone architecture generated by CO2 laser ablation of MWCNT/Ecoflex dielectric layer film. In cooperation with the gradient micro-cone architecture and a dielectric layer of MWCNT/Ecoflex with a variable high dielectric constant under pressure, the pressure sensor exhibits linearity (R2 = 0.990) within the pressure range of 0-60 kPa, boasting a sensitivity of 0.75 kPa-1. Secondly, the sensor exhibits a rapid response time of 95 ms, a recovery time of 129 ms, hysteresis of 6.6%, and stability over 500 cycles. Moreover, the sensor effectively exhibited comprehensive detection of physiological signals, airflow detection, and Morse code communication, thereby demonstrating the potential for various applications.

Keywords: dielectric constant; flexible capacitive pressure sensor; gradient micro-cone architecture; laser ablation; linear response; silicone rubber.