Novel Insights Into the Intratendinous Pressure Behavior of the Achilles Tendon in Athletes

Sports Health. 2024 Apr 12:19417381241245357. doi: 10.1177/19417381241245357. Online ahead of print.

Abstract

Background: In contrast to other musculoskeletal tissues, the normal pressure behavior of the Achilles tendon is poorly understood. This study aimed to explore the normal intratendinous and perfusion pressures of the Achilles tendon at rest and during exercise, and investigate potential correlations with tendon load and morphology.

Hypothesis: Intratendinous and perfusion pressures of the Achilles tendon exhibit similarities to other musculoskeletal tissues and depend on tendon load and morphology.

Study design: Observational study.

Level of evidence: Level 3.

Methods: A total of 22 recreational athletes were enrolled. Demographics, activity level, and blood pressures were recorded. Achilles tendon thickness and echogenicity were assessed 25 mm proximal to the posterosuperior calcaneal border. In this region, intratendinous and perfusion pressures of the Achilles tendon were measured at rest and during isometric plantarflexion up to 50 N, using the microcapillary infusion technique. Linear mixed models were used to investigate the effects of plantarflexion force, tendon thickness, and echogenicity on intratendinous and perfusion pressures.

Results: At rest, intratendinous and perfusion pressures of the Achilles tendon were 43.8 ± 15.2 and 48.7 ± 18.4 mmHg, respectively. Intratendinous pressure increased linearly with plantarflexion force, reaching 101.3 ± 25.5 mmHg at 50 N (P < 0.01). Perfusion pressure showed an inverse relationship, dropping below 0 mmHg at 50 N (P < 0.01). Neither intratendinous nor perfusion pressures of the Achilles tendon correlated with tendon thickness or echogenicity.

Conclusion: The normal intratendinous resting pressure of the Achilles tendon is higher than other musculoskeletal tissues, making it more susceptible to ischemia. During exercise, intratendinous pressure increases significantly to a level that lowers perfusion pressure, thereby compromising blood supply at already low plantarflexion forces.

Clinical relevance: Given the potential role of ischemia in Achilles tendinopathy, our findings caution against intratendinous injections, as they may exacerbate high intratendinous resting pressure, and against prolonged postexercise tendon stretching, as the associated rise in intratendinous pressure may impair the required hyperemic response.

Keywords: Achilles tendinopathy; Achilles tendon; intratendinous pressure.