Genomic Analysis of Inbreeding and Coancestry in Nordic Jersey and Holstein Dairy Cattle Populations

J Dairy Sci. 2024 Apr 10:S0022-0302(24)00740-9. doi: 10.3168/jds.2023-24553. Online ahead of print.

Abstract

In recent years, Genomic Selection (GS) has accelerated genetic gain in dairy cattle breeds worldwide. Despite the evident genetic progress, several dairy populations have also encountered challenges such as heightened inbreeding rates and reduced effective population sizes. The challenge has been to find a balance between achieving substantial genetic gain while managing genetic diversity within the population, thereby mitigating the negative effects of inbreeding depression. This study aims to elucidate the impact of GS on pedigree and genomic rates of inbreeding (ΔF) and coancestry (ΔC) in Nordic Jersey (NJ) and Holstein (NH) cattle populations. Furthermore, key genetic metrics including the generation interval (L), effective population size (Ne), and future effective population size (FNe) were assessed between 2 time periods, before and after GS, and across distinct animal cohorts in both breeds: females, bulls, and approved semen-producing bulls (AI-sires). Analysis of ΔF and ΔC revealed distinct trends across the studied periods and animal groups. Notably, there was a consistent increase in yearly ΔF for most animal groups in both breeds. An exception was observed in NH AI-sires, which demonstrated a slight decrease in yearly ΔF. Moreover, NJ displayed minimal changes in yearly ΔC between the periods, whereas NH exhibited elevated ΔC values across all animal groups. Particularly striking was the substantial increase in yearly ΔC within the NH female population, surging from 0.02% to 0.39% between the periods. Implementation of GS resulted in a reduction of the generation interval across all animal cohorts in both NJ and NH breeds. However, the extent of reduction was more pronounced in males compared with females. This reduction in generation interval influenced generational changes in ΔF and ΔC. Bulls and AI-sires of both breeds exhibited reduced generational ΔF between periods, in contrast to females that demonstrated an opposing pattern. Between the periods, NJ maintained a relatively stable Ne, 29.4 before and 30.3 after GS, while NH experienced a notable decline from 54.3 to 42.8. Female groups in both breeds displayed a negative Ne trend, while males demonstrated either neutral or positive Ne developments. Regarding FNe, NJ exhibited positive FNe development with an increase from 40.7 to 57.2. The opposite was observed in NH, where FNe decreased from 198.8 to 42.7. In summary, it was evident that the genomic methods could detect differences between the populations and changes in ΔF and ΔC more efficiently than pedigree methods. GS implementation yielded positive outcomes within the NJ population regarding the rate of coancestry but the opposite was observed with NH. Moreover, analysis of ΔC data hints at the potential to decrease future ΔF through informed mating strategies. Conversely, NH faces more pressing concerns, even though ΔF remains comparatively modest in contrast to what has been observed in other Holstein populations. These findings underscore the necessity of genomic control of inbreeding and coancestry with strategic changes in the Nordic breeding schemes for dairy to ensure long-term sustainability in the forthcoming years.

Keywords: Inbreeding; coancestry; dairy cattle; effective population size.