Diffusion tensor imaging combined with chemical shift-encoded sequence to quantify the adaptive changes of calf muscles in amateur marathoners

Eur J Radiol. 2024 Mar 28:175:111449. doi: 10.1016/j.ejrad.2024.111449. Online ahead of print.

Abstract

Purpose: Calf muscles play an important role in marathon race, and the incidence of injury is high in this process. This study prospectively quantified diffusion tensor metrics, muscle fat fraction (MFF) and cross-sectional area (CSA) of calf muscles induced by endurance exercise in amateur marathoners, and the potential mechanisms underlying the changes in these parameters were analyzed.

Method: In this prospective study, 35 marathoners (27 males, 8 females; mean age (standard deviation, SD), 38.92 (4.83) years) and 26 controls (18 males, 8 females; mean age (SD), 38.35 (6.75) years) underwent magnetic resonance imaging (MRI) from September 2022 to March 2023. The diffusion tensor eigenvalues (λ1, λ2, λ3), radial diffusivity (RD), fractional anisotropy (FA), MFF and CSA of calf muscles were compared between marathoners and controls. A binary logistic regression model with gender correction was performed analyze the relationship between marathon exercise and DTI parameters, CSA and MFF of calf muscles.

Results: Interobserver agreement was good (κ = 0.71). The results of binary logistic regression model with gender correction showed that the regression coefficients of FA values in anterior group of calf (AC), soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) were negative, and the odds ratios (OR) were 0.33, 0.45, 0.35, 0.05, respectively (P < 0.05). The OR of RD in SOL and λ2 in external group of calf (EC) were relatively higher, 3.74 and 3.26, respectively (P < 0.05). CSA was greater in SOL of marathoners, with an OR value of 1.00(P < 0.05). The MFF in AC and LG was lower in marathoners and OR of two indexes were -0.69 and -0.59, respectively (P < 0.05).

Conclusions: Diffusion tensor imaging (DTI) combined with chemical shift-encoded sequence can noninvasively detect and quantify the adaptive changes of calf muscle morphology, microstructure and tissue composition induced by long-term running training in amateur marathoners.

Keywords: Diffusion tensor imaging; Magnetic resonance imaging; Marathon running; Muscles; Water/fat imaging.