13CH4/12CH4 sensing using Raman spectroscopy

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 4:315:124253. doi: 10.1016/j.saa.2024.124253. Online ahead of print.

Abstract

The paper presents a technique for measuring the concentration of 13CH4 in natural methane using Raman spectroscopy. The peak positions and the relative scattering cross-sections of the Q-branches for the most intense vibrational bands of 13CH4 are determined. Features of the 13CH4/12CH4 ratio measurement methods using Q-branches of the ν1 and ν3 bands were considered. It was shown that the 13CH4/12CH4 ratio can be determined by simulation of the ν3 bands of these molecules without the use of experimental spectra. In our experiments the measurement error of δ13C value was 10 ‰ using the 100-s exposure spectrum at a gas pressure close to 1 atm recorded on the developed Raman spectrometer. In addition, the Raman spectra of alkanes (up to n-hexane) in the range of 2850-3050 cm-1 at a resolution of 0.4 cm-1 are presented, and their integrated intensities in the ranges of the characteristic bands of 13CH4 and 12CH4 are provided. The data obtained make it possible to expand the capabilities of Raman gas analyzers in the mud gas logging industry.

Keywords: (13)C/(12)C; Alkanes; Gas analysis; Isotopic composition; Methane; Raman spectroscopy.