Modeling refined differences of cortical folding patterns via spatial, morphological, and temporal fusion representations

Cereb Cortex. 2024 Apr 1;34(4):bhae146. doi: 10.1093/cercor/bhae146.

Abstract

The gyrus, a pivotal cortical folding pattern, is essential for integrating brain structure-function. This study focuses on 2-Hinge and 3-Hinge folds, characterized by the gyral convergence from various directions. Existing voxel-level studies may not adequately capture the precise spatial relationships within cortical folding patterns, especially when relying solely on local cortical characteristics due to their variable shapes and homogeneous frequency-specific features. To overcome these challenges, we introduced a novel model that combines spatial distribution, morphological structure, and functional magnetic resonance imaging data. We utilized spatio-morphological residual representations to enhance and extract subtle variations in cortical spatial distribution and morphological structure during blood oxygenation, integrating these with functional magnetic resonance imaging embeddings using self-attention for spatio-morphological-temporal representations. Testing these representations for identifying cortical folding patterns, including sulci, gyri, 2-Hinge, and 2-Hinge folds, and evaluating the impact of phenotypic data (e.g. stimulus) on recognition, our experimental results demonstrate the model's superior performance, revealing significant differences in cortical folding patterns under various stimulus. These differences are also evident in the characteristics of sulci and gyri folds between genders, with 3-Hinge showing more variations. Our findings indicate that our representations of cortical folding patterns could serve as biomarkers for understanding brain structure-function correlations.

Keywords: cortical folding patterns; deep learning; functional activity; spatial distribution and morphological structure.

MeSH terms

  • Cell Membrane
  • Female
  • Humans
  • Male
  • Recognition, Psychology*