FT-IR combined with oscillatory rheology: How to evaluate chemical structure of ester derivatives of MA-containing compatibilizers

Heliyon. 2024 Mar 30;10(7):e28948. doi: 10.1016/j.heliyon.2024.e28948. eCollection 2024 Apr 15.

Abstract

Ester derivatives of experimental olefin-maleic anhydride copolymers synthesized at the University of Pannonia have been investigated by both classical and instrumental analytical methods that contribute to a deeper understanding of how that type of additives functions as compatibilizers for plastics and rubbers. Titration-based acid and saponification numbers have provided limited information about the chemical structure of the experimental copolymer compounds. A prompt, precise and low-cost method or combination of methods has been required to access to the ratio of the various derivatives not only straight after esterification but also for quality control during long-term storage considering the even stricter sustainability aspects either. Reproduction and scaling-up synthesises can be also followed by the combined measuring techniques of Fourier-transform infrared spectroscopy (FT-IR) and oscillatory rheometry. Structural changes occurred in the additives could be followed through monitoring their Ester Indices (EI) during the measurement, which can be connected also to the long-term properties. Experimental additives (AD) like AD-1 and AD-2 types with lower EI values of 21.5 % and 32.1 %, respectively, resulted in higher upper limits of the linear viscoelastic (LVE) range (15 % and 10 %). Conversely, the higher EI values of AD-3 and AD-4 led to significantly lower or even immeasurable upper limits of the LVE range. Additives with solid behaviour showed slight dependence on frequency above the crossover point that indicated strong connections disappearing.

Keywords: Compatibilizing additive; Ester-index; FT-IR spectroscopy; Olefin–maleic anhydride copolymer; Oscillatory rheology.