Key Roles of Interfaces in Inverted Metal-Halide Perovskite Solar Cells

ACS Nano. 2024 Apr 23;18(16):10688-10725. doi: 10.1021/acsnano.3c11642. Epub 2024 Apr 10.

Abstract

Metal-halide perovskite solar cells (PSCs), an emerging technology for transforming solar energy into a clean source of electricity, have reached efficiency levels comparable to those of commercial silicon cells. Compared with other types of PSCs, inverted perovskite solar cells (IPSCs) have shown promise with regard to commercialization due to their facile fabrication and excellent optoelectronic properties. The interlayer interfaces play an important role in the performance of perovskite cells, not only affecting charge transfer and transport, but also acting as a barrier against oxygen and moisture permeation. Herein, we describe and summarize the last three years of studies that summarize the advantages of interface engineering-based advances for the commercialization of IPSCs. This review includes a brief introduction of the structure and working principle of IPSCs, and analyzes how interfaces affect the performance of IPSC devices from the perspective of photovoltaic performance and device lifetime. In addition, a comprehensive summary of various interface engineering approaches to solving these problems and challenges in IPSCs, including the use of interlayers, interface modification, defect passivation, and others, is summarized. Moreover, based upon current developments and breakthroughs, fundamental and engineering perspectives on future commercialization pathways are provided for the innovation and design of next-generation IPSCs.

Keywords: Electron transfers; Energy levels; High-efficiency; Interface engineering; Perovskite solar cells; Power conversion efficiency; Stability; p-i-n structure.

Publication types

  • Review