Cation-Loaded Porous Mg2+-Zeolite Layer Direct Dendrite-Free Deposition toward Long-Life Lithium Metal Anodes

Adv Sci (Weinh). 2024 Apr 10:e2308939. doi: 10.1002/advs.202308939. Online ahead of print.

Abstract

Lithium metal, with ultrahigh theoretical specific capacity, is considered as an ideal anode material for the lithium-ion batteries. However, its practical application is severely plagued by the uncontrolled formation of dendritic Li. Here, a cation-loaded porous Mg2+-Zeolite layer is proposed to enable the dendrite-free deposition on the surface of Li metal anode. The skeleton channels of zeolite provide the low coordinated Li+-solvation groups, leading to the faster desolvation process at the interface. Meanwhile, anions-involved solvation sheath induces a stable, inorganic-rich SEI, contributing to the uniform Li+ flux through the interface. Furthermore, the co-deposition of sustained release Mg2+ realizes a new faster migration pathway, which proactively facilitates the uniform diffusion of Li on the lithium substrate. The synergistic modulation of these kinetic processes facilitates the homogeneous Li plating/stripping behavior. Based on this synergistic mechanism, the high-efficiency deposition with cyclic longevity exceeding 2100 h is observed in the symmetric Li/Li cell with Mg2+-Zeolite modified anode at 1 mA cm-2. The pouch cell matched with LiFePO4 cathode fulfills a capacity retention of 88.4% after 100 cycles at a severe current density of 1 C charge/discharge. This synergistic protective mechanism can give new guidance for realizing the safe and high-performance Li metal batteries.

Keywords: Li metal anodes; Mg2+‐zeolite; dendrites; multifunction; plating/stripping behavior.