Effects of Simulated Microgravity on Rat Reproductive System: Potential Benefits of Vitamin D3 Intervention

Reprod Sci. 2024 Apr 10. doi: 10.1007/s43032-024-01508-9. Online ahead of print.

Abstract

Gravity in space can have a negative impact on the reproductive system. Given that the reproductive system is one of vitamin D's objectives, this study will use a simulated microgravity model to evaluate its impact on the rat reproductive system.Twenty-two male Wistar rats were allocated into four groups at random. Under microgravity circumstances, the rats were housed in both special and standard cages. Each group was then separated into two subgroups, one of which received vitamin D3 and the other did not. Blood was drawn twice to determine blood levels of vitamin D3, LH, FSH, and testosterone. Rat testes were isolated for histological analysis, as well as a piece of epididymis for sperm count and morphological examination.Microgravity had a detrimental effect on testicular tissue, resulting in lower serum levels of LH and testosterone (p-value < 0.001). Spermatogenesis was largely inhibited under microgravity. During microgravity conditions, however, vitamin D3 had a good effect on testicular structure, and the total number of sperm. Simulated microgravity affects the male reproductive system, compromising testicular morphology, sperm parameters, and hormonal balance. However, this study shows that vitamin D3 supplementation can act as a preventative strategy, minimizing the negative consequences of microgravity. The beneficial effect of vitamin D3 on testicular health and sperm quality implies that it may be useful in protecting male reproductive function in space-related situations.

Keywords: Animal model; Microgravity; Reproduction; Spermatogenesis; Vitamin D3.