Instantaneous Q10 of night-time leaf respiratory CO2 efflux - measurement and analytical protocol considerations

New Phytol. 2024 Apr 10. doi: 10.1111/nph.19753. Online ahead of print.

Abstract

The temperature sensitivity (e.g. Q10) of night-time leaf respiratory CO2 efflux (RCO2) is a fundamental aspect of leaf physiology. The Q10 typically exhibits a dependence on measurement temperature, and it is speculated that this is due to temperature-dependent shifts in the relative control of leaf RCO2. Two decades ago, a review hypothesized that this mechanistically caused change in values of Q10 is predictable across plant taxa and biomes. Here, we discuss the most appropriate measuring protocol among existing data and for future data collection, to form the foundation for a future mechanistic understanding of Q10 of leaf RCO2 at different temperature ranges. We do this primarily via a review of existing literature on Q10 of night-time RCO2 and only supplement to a lesser degree with own original data. Based on mechanistic considerations, we encourage that instantaneous Q10 of leaf RCO2 to represent night-time should be measured: only at night-time; only in response to short-term narrow temperature variation (e.g. max. 10°C) to represent a given midpoint temperature at a time; in response to as many temperatures as possible within the chosen temperature range; and on still attached leaves.

Keywords: literature review; mechanistic studies; metabolism; nocturnal; plant; respiration; temperature response; temperature sensitivity.