From weeds to natural enemies: implications of weed cultivation and biopesticides for organic onion production

J Econ Entomol. 2024 Apr 10:toae064. doi: 10.1093/jee/toae064. Online ahead of print.

Abstract

Weed management is challenging for vegetable crops that are highly sensitive to weed competition, such as onions. Thrips (Thysanoptera: Thripidae) are major insect pests of onions, causing damage through feeding, and vectoring bacterial pathogens causing bulb rot. Both thrips and their associated pathogens are known to survive on many weed species in onion growing regions. Combining weeding with biopesticides may synergistically manage thrips and reduce disease prevalence. However, disturbances from weeding may negatively impact natural enemies. We estimated the effects of organic weed management and biopesticides on weed density, thrips and natural enemy activity, disease severity, and yield. The experiment was a randomized complete block design, with 4 replications of each weeding (control, tine-weeded twice, tine-weeded 4 times, and hand-weeded) and biopesticide (control, OxiDate 2.0, Serenade) combination. Arthropods were monitored using yellow sticky cards, and weed counts, marketable yield, and bulb rot prevalence were estimated. Hand-weeding resulted in the lowest weed density and thrips abundance. Additionally, hand-weeding produced a 9× higher yield compared to all other treatments. Significant interactions were observed between tine-weeding and biopesticide treatments on the prevalence of bulb rot. Natural enemy abundance was slightly negatively impacted by weeding, dependent on the year. DNA metabarcoding results showed high parasitoid diversity in this onion system and high numbers of reads for multiple genera containing important known biological control agents. Our study suggests hand-weeding is necessary in the southeast for maximum onion yield. Future research should focus on exploring the impact of management on natural enemy communities in onion systems on a large scale.

Keywords: biological control; biopesticide; organic management; plant–insect interaction; vector-borne disease.