LAGSwin: Local attention guided Swin-transformer for thermal infrared sports object detection

PLoS One. 2024 Apr 9;19(4):e0297068. doi: 10.1371/journal.pone.0297068. eCollection 2024.

Abstract

Compared with visible light images, thermal infrared images have poor resolution, low contrast, signal-to-noise ratio, blurred visual effects, and less information. Thermal infrared sports target detection methods relying on traditional convolutional networks capture the rich semantics in high-level features but blur the spatial details. The differences in physical information content and spatial distribution of high and low features are ignored, resulting in a mismatch between the region of interest and the target. To address these issues, we propose a local attention-guided Swin-transformer thermal infrared sports object detection method (LAGSwin) to encode sports objects' spatial transformation and orientation information. On the one hand, Swin-transformer guided by local attention is adopted to enrich the semantic knowledge of low-level features by embedding local focus from high-level features and generating high-quality anchors while increasing the embedding of contextual information. On the other hand, an active rotation filter is employed to encode orientation information, resulting in orientation-sensitive and invariant features to reduce the inconsistency between classification and localization regression. A bidirectional criss-cross fusion strategy is adopted in the feature fusion stage to enable better interaction and embedding features of different resolutions. At last, the evaluation and verification of multiple open-source sports target datasets prove that the proposed LAGSwin detection framework has good robustness and generalization ability.

MeSH terms

  • Electric Power Supplies*
  • Generalization, Psychological
  • Knowledge
  • Light
  • Physical Examination*

Grants and funding

The authors received no specific funding for this work.