The Jena Method: Perfusionist Independent, Standby Wet-Primed Extracorporeal Membrane Oxygenation (ECMO) Circuit for Immediate Catheterization Laboratory and/or Hybrid Operating Room Deployment

J Clin Med. 2024 Feb 24;13(5):1292. doi: 10.3390/jcm13051292.

Abstract

Background: The timely initiation of extracorporeal membrane oxygenation (ECMO) is crucial for providing life support. However, delays can occur when perfusionists are not readily available. The Jena Method aims to address this issue by offering a wet-primed ECMO system that can be rapidly established without the perfusionist's presence. Methods: The goal was to ensure prompt ECMO initiation while maintaining patient safety. The method focuses on meeting hygienic standards, safe primed storage of the circuit, staff training, and providing clear step-by-step instructions for the ECMO unit. Results: Since implementing the Jena Method in 2015, 306 patients received VA-ECMO treatment. Bacterial tests confirmed the sterility of the primed ECMO circuits during a 14-day period. The functionality of all the components of the primed ECMO circuit after 14 days, especially the pump and oxygenator, were thoroughly checked and no malfunction was found to this day. To train staff for independent ECMO initiation, a step-by-step system involves safely bringing the ECMO unit to the intervention site and establishing all connections. This includes powering up, managing recirculation, de-airing the system, and preparing it for cannula connection. A self-developed picture-based guide assists in this process. New staff members learn from colleagues and receive quarterly training sessions by perfusionists. After ECMO deployment, the perfusionist provides a new primed system for a potential next patient. Conclusions: Establishing a permanently wet-primed on-demand extracorporeal life support circuit without direct perfusionist support is feasible and safe. The Jena Method enables rapid ECMO deployment and has the potential to be adopted in emergency departments as well.

Keywords: ECLS; ECMO; cardiac arrest; cardiac resuscitation; intensive care; low cardiac output support; primed circuit; shock; wet circuit.

Grants and funding

This research received no external funding.