The Dynamic Mechanical Properties and Damage Constitutive Model of Ultra-High-Performance Steel-Fiber-Reinforced Concrete (UHPSFRC) at High Strain Rates

Materials (Basel). 2024 Feb 1;17(3):703. doi: 10.3390/ma17030703.

Abstract

A high strain rate occurs when the strain rate exceeds 100 s-1. The mechanical behavior of materials at a high strain rate is different from that at middle and low strain rates. In order to study the dynamic compressive mechanical properties of ultra-high-performance steel-fiber-reinforced concrete (UHPSFRC) at high strain rates, an electro-hydraulic servo universal testing machine and a separate Hopkinson pressure bar (SHPB) with a diameter of 120 mm were used, respectively. A quasi-static compression test (strain rate 0.001 s-1) and impact compression test with a strain rate range of 90~200 s-1 were carried out to study the failure process, failure mode, and stress-strain curve characteristics of UHPSFRC at different strain rates and quantify the strain rate strengthening effect and fiber toughening effect. Based on the statistical damage theory and energy conversion principle, a dynamic damage constitutive model considering the effects of strain rate and fiber content was constructed. The results showed that the rate correlation of UHPSFRC and the fiber toughening properties showed a certain coupling competition mechanism. When the fiber content was less than 1.5%, with an increase in the steel fiber content, the crack initiation and propagation time of the specimen was extended, and the strain rate sensitivity gradually decreased. When the fiber content was 2%, the impact compressive strength of the specimen was optimal. Compared with UHPC, the dynamic increase factor (DIF) of UHPSFRC was significantly lower. The dynamic damage constitutive model established in this paper, considering the influence of strain rate and fiber content, has a good applicability and can describe the mechanical behavior of UHPSFRC at a high strain rate.

Keywords: UHPSFRC; damage constitutive model; dynamic properties; high strain rate; steel fiber content; strength increase factor.