Data on molecular docking and molecular dynamics targeting Mycobacterium tuberculosis shikimic acid kinase

Data Brief. 2024 Mar 26:54:110370. doi: 10.1016/j.dib.2024.110370. eCollection 2024 Jun.

Abstract

We have previously performed a hierarchical in silico screening of a Mycobacterium tuberculosis shikimic acid kinase [1]. Specifically, 11 compounds were screened from a library of 154,118 compounds provided by ChemBridge [2] using UCSF DOCK [3] and the GOLD [4] program in the first and second steps, respectively. Molecular dynamic simulations were further performed on compound 2 (2-[(5Z)-5-(1-benzyl-5bromo-2-oxoindol-3-(5Z)-5-(1-benzyl-5-bromo-2-oxoindol-3-(5Z)-4-oxo-2 ylidene)-4oxo-2-sulfanylidene-1,3-thiazolidin-3-yl] acetic acid), which showed antimicrobial efficacy. These processes yielded ligand docking scores and trajectories. In this data article, we have added solvent-accessible surface area and PCA analyses, which were calculated from the raw docking scores and trajectories. Data obtained from molecular docking and molecular dynamic simulations are useful in two ways: (1) Further support for previous work (2) Provides a stepping stone for experimental scientists to conduct in silico studies and research ideas for other drug discovery researchers and computational biologists. We believe that this article will provide an opportunity to develop new Mycobacterium tuberculosis therapeutics through searching for analogs and inhibitors against new targets.

Keywords: Docking simulation; In silico screening; Molecular dynamics; Tuberculosis.