Investigation on the contribution of swim bladder to hearing in crucian carp (Carassius carassius)

J Acoust Soc Am. 2024 Apr 1;155(4):2492-2502. doi: 10.1121/10.0025544.

Abstract

The swim bladder in some teleost fish functions to transfer the sound energy of acoustic stimuli to the inner ears. This study uses the auditory evoked potential tests, micro-computed tomography scanning, reconstruction, and numerical modeling to assess the contribution of the swim bladder to hearing in crucian carp (Carassius carassius). The auditory evoked potential results show that, at the tested frequency range, the audiogram of fish with an intact swim bladder linearly increases, ranging from 100 to 600 Hz. Over this frequency, the sound pressure thresholds have a local lowest value at 800 Hz. The mean auditory threshold of fish with an intact swim bladder is lower than that of fish with a deflated swim bladder by 0.8-20.7 dB. Furthermore, numerical simulations show that the received pressure of the intact swim bladders occurs at a mean peak frequency of 826 ± 13.6 Hz, and no peak response is found in the deflated swim bladders. The increased sensitivity of reception in sound pressure and acceleration are 34.4 dB re 1 μPa and 40.3 dB re 1 m·s-2 at the natural frequency of swim bladder, respectively. Both electrophysiological measurement and numerical simulation results show that the swim bladder can potentially extend hearing bandwidth and further enhance auditory sensitivity in C. carassius.

MeSH terms

  • Animals
  • Carps*
  • Hearing
  • Hearing Tests
  • Urinary Bladder
  • X-Ray Microtomography