Effects of diets supplemented with bioactive peptides on nutrient digestibility, immune cell responsiveness, and fecal characteristics, microbiota, and metabolites of adult cats

J Anim Sci. 2024 Jan 3:102:skae104. doi: 10.1093/jas/skae104.

Abstract

Bioactive peptides (BP) are recognized for their ability to function as antioxidants and maintain lipid stability. They may have positive health effects, including antihypertensive, anti-inflammatory, antimicrobial, osteoprotective, gut health, and immunomodulatory properties, but are poorly tested in cats. Our primary objective was to determine the apparent total tract digestibility (ATTD) of BP-containing kibble diets and assess how the fecal characteristics, metabolites, and microbiota were affected in adult cats. Our secondary objective was to test whether BP could impact blood oxidative stress markers and cytokine concentrations following transport stress. Twelve adult cats (4.83 ± 0.37 yr; 4.76 ± 0.14 kg) were used in a replicated 4 × 4 Latin square design to test four extruded kibble diets: Control (no BP), Chicken (4% chicken BP), Marine1 (2% marine BP), and Marine2 (4% marine BP). Each experimental period lasted 28 d, with a 20-d adaptation phase, 5 d for fecal collection, 2 d for blood collection, and 1 d for transport stress testing (driven in vehicle in individual carriers for 45 min). Salivary cortisol and blood oxidative stress markers and cytokines were measured after transport. Fecal microbiota data were evaluated using 16S rRNA gene amplicon sequencing and QIIME2. All other data were analyzed using the Mixed Models procedure of SAS, with P < 0.05 being considered significant and P < 0.10 considered trends. No differences were observed in animal health outcomes, with all cats remaining healthy and serum metabolites remaining within reference ranges. Cats fed the Marine2 diet had higher (P < 0.05) ATTD of dry matter (84.5% vs. 80.9%) and organic matter (88.3% vs. 85.8%) than those fed the control diet. The ATTD of protein and energy tended to be higher (P < 0.10) for cats fed the Marine2 diet. Fecal characteristics, metabolites, and bacterial alpha and beta diversity measures were not affected by treatment. However, the relative abundances of six bacterial genera were different (P < 0.05) and two bacterial genera tended to be different (P < 0.10) across treatments. Treatment did not alter salivary cortisol, blood oxidative stress markers, or blood cytokines after transport stress. Our data suggest that BP inclusion may increase nutrient digestibility and modify fecal microbiota and immune measures. More testing is required, however, to determine whether BP may provide additional benefits to cats.

Keywords: feline microbiota; feline nutrition; transport stress.

Plain language summary

Dietary bioactive peptides (BP) may have positive health effects, but are poorly tested in cats. Our primary objective was to determine the apparent total tract digestibility of BP-containing kibble diets and assess how fecal characteristics, metabolites, and microbiota were affected in adult cats. Our secondary objective was to test whether BP could impact blood oxidative stress markers and cytokines following transport stress. Adult cats were used in a replicated 4 × 4 Latin square design to test four extruded kibble diets containing different BP concentrations. After diet adaptation, fecal and blood samples were collected and transport stress testing was done in each experimental period. All cats remained healthy and serum metabolites remained within reference ranges. Cats fed one of the BP diets had higher dry matter and organic matter digestibilities and tended to have higher protein and energy digestibilities. Fecal characteristics, metabolites, and microbiota diversity measures were not different, but the relative abundances of eight bacterial genera differed or tended to differ across treatments. Treatments did not alter oxidative stress markers after transport stress. Our data suggest that BP inclusion may increase nutrient digestibility and modify fecal microbiota. Further testing is required to determine whether BP provides additional benefits to cats.

MeSH terms

  • Animal Feed* / analysis
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Cats
  • Diet* / veterinary
  • Dietary Supplements*
  • Digestion* / drug effects
  • Feces* / chemistry
  • Feces* / microbiology
  • Female
  • Gastrointestinal Microbiome* / drug effects
  • Male
  • Oxidative Stress / drug effects
  • Peptides

Substances

  • Peptides