The effects of different durations of exposure to hypomagnetic field on the number of active mitochondria and ROS levels in the mouse hippocampus

Biochem Biophys Rep. 2024 Mar 28:38:101696. doi: 10.1016/j.bbrep.2024.101696. eCollection 2024 Jul.

Abstract

Reactive oxygen species (ROS) are one of the potential molecules in response to a hypomagnetic field (HMF), and exposure to an HMF for eight weeks led to an increase in ROS levels in the whole hippocampus area in mice. ROS are mainly derived from the byproducts of mitochondrial metabolism. However, previous in vivo studies mostly focus on the influence of one time point of HMF exposure on the mouse hippocampus and lack comparative studies on the effects of different durations of HMF exposure on the mouse hippocampus. Here, we investigated the effects of different durations of HMF on the number of active mitochondria and ROS levels in mouse hippocampus. Compared with the geomagnetic field (GMF) group, we found that the number of active mitochondria in the hippocampus was significantly reduced during the sixth week of HMF exposure, whereas the number of active mitochondria was significantly reduced and the ROS levels was significantly increased during the eighth week of HMF exposure. The number of active mitochondria gradually decreased and ROS levels gradually increased in both GMF and HMF groups with prolonged exposure time. In addition, the expression level of the PGC-1α gene in the hippocampus, the main regulator of mitochondrial biogenesis, decreased significantly in the eighth week of HMF exposure. These results reveal that the changes in active mitochondria number and ROS levels were dependent on the durations of HMF exposure, and prolonged exposure to HMF exacerbates these changes.

Keywords: Active mitochondria; Hippocampus; Hypomagnetic field; Mitochondrial biogenesis; Reactive oxygen species.