Menstrual abnormalities effects on clinical features and in vitro fertilization pregnancy outcomes in women with polycystic ovarian syndrome

AJOG Glob Rep. 2024 Mar 14;4(2):100332. doi: 10.1016/j.xagr.2024.100332. eCollection 2024 May.

Abstract

Background: The diagnostic criteria and phenotypes in polycystic ovary syndrome are heterogeneous. Currently, it is unclear how to assess a patient's prognosis based on the onset time of menstruation disturbance. Evidence on this topic is scarce and has mainly focused on menstrual patterns.

Objective: This study aimed to assess the association between the onset time of menstrual disturbance and clinical features and in vitro fertilization pregnancy outcomes in patients with polycystic ovary syndrome.

Study design: Our study was a secondary analysis of data collected as part of a randomized controlled trial conducted to compare live birth rates between fresh embryo transfer and frozen embryo transfer in 1508 individuals with polycystic ovary syndrome. Here, 1500 participants were classified into 2 groups according to the onset time of menstrual disturbance: immediately after menarche (early group) and after at least 1 year of regular menstruation (late group). We compared the prepregnancy clinical features, variables of ovarian stimulation, pregnancy outcomes after the initial cycle of embryo transfer, and perinatal and neonatal complications in the 2 groups.

Results: Compared with the late group, the early group had more antral follicles (32.00 [range, 27.25-39.50] vs 28.00 [range, 24.00-36.00]; P<.001), an elevated level of antimüllerian hormone (7.02 ng/mL [range, 3.60-11.47] vs 5.66 ng/mL [range, 3.65-8.92]; P=.024), a higher level of baseline luteinizing hormone (10.01±5.93 vs 8.51±5.53 IU/l; P<.001) and luteinizing hormone-to-follicle-stimulating hormone ratio (1.51 [range, 1.00-2.32] vs 1.45 [range, 0.92-2.13]; P<.001), lower levels of fasting glucose (5.47 mmol/L [range, 5.11-5.73] vs 5.50 mmol/L [range, 5.17-5.76]; P<.001), and insulin at 2 hours after 75-g oral glucose tolerance test (56.85 µU/mL [range, 34.63-94.54] vs 59.82 µU/mL [range, 33.56-94.67]; P=.027), a higher level of high-density lipoprotein (1.26 mmol/L [range, 1.04-1.37] vs 1.21 mmol/L [range, 1.07-1.45]; P=.006). During in vitro fertilization, the early group had a higher level of peak estradiol (4596.50 pg/mL [range, 2639.25-6321.00] vs 3954.00 pg/mL [range, 2378.75-6113.50]; P=.013), and luteinizing hormone (2.52 IU/L [range, 1.40-4.21] vs 1.93 IU/L [range, 0.91-3.32]; P=.010) on the day of human chorionic gonadotropin trigger. There was no statistically significant difference observed in the number of oocytes and embryos, the rates of pregnancy and live birth, and the risks of obstetrical and neonatal between the 2 groups.

Conclusion: An early onset of menstrual disturbance in patients with polycystic ovary syndrome may be associated with slightly more severe reproductive features and slightly milder metabolic features. Nonetheless, the outcomes of in vitro fertilization and the initial cycle of embryo transfer were comparable between the 2 groups.

Keywords: embryo transfer; metabolic feature; onset time of menstrual disturbance; polycystic ovary syndrome; pregnancy outcomes.