Eutrophication evolution of lakes in China: Four decades of observations from space

J Hazard Mater. 2024 May 15:470:134225. doi: 10.1016/j.jhazmat.2024.134225. Epub 2024 Apr 5.

Abstract

The lake eutrophication is highly variable in both time and location, and greatly restricts the sustainable development of water resources. The lack of national eutrophication evaluation for multi-scale lakes limits the pertinent governance and sustainable management of water quality. In this study, a remote sensing approach was developed to capture 40-year dynamics of trophic state index (TSI) for nationwide lakes in China. 32% of lakes (N = 1925) in China were eutrophic and 26% were oligotrophic, and a longitudinal pattern was discovered, with the 40-year average TSI of 62.26 in the eastern plain compared to 23.72 in the Tibetan Plateau. A decreasing trend was further observed in the past four decades with a correlation of -0.16, which was mainly discovered in the Tibetan Plateau lakes (r > -0.90, p < 0.01). The contribution of climate change and human activities was quantified and varied between lake zones, with anthropogenic factors playing a dominant role in the east plain lakes (88%, N = 473) and large lakes are subject to a more complex driving mechanism (≥ 3 driving factors). The study expands the spatiotemporal scale for eutrophication monitoring and provides an important base for strengthening lake management and ecological services.

Keywords: China; Eutrophication; Lakes; Landsat; Trophic state.