Real-time crash prediction on express managed lanes of Interstate highway with anomaly detection learning

Accid Anal Prev. 2024 Jun:201:107568. doi: 10.1016/j.aap.2024.107568. Epub 2024 Apr 5.

Abstract

To facilitate efficient transportation, I-4 Express is constructed separately from general use lanes in metropolitan area to improve mobility and reduce congestion. As this new infrastructure would undoubtedly change the traffic network, there is a need for more understanding of its potential safety impact. Unfortunately, many advanced real-time crash prediction models encounter an important challenge in their applicability due to their demand for a substantial volume of data for direct modeling. To tackle this challenge, we proposed a simple yet effective approach - anomaly detection learning, which formulates model as an anomaly detection problem, solves it through normality feature recognition, and predicts crashes by identifying deviations from the normal state. The proposed approach demonstrates significant improvement in the Area Under the Curve (AUC), sensitivity, and False Alarm Rate (FAR). When juxtaposed with the prevalent direct classification paradigm, our proposed anomaly detection learning (ADL) consistently outperforms in AUC (with an increase of up to 45%), sensitivity (experiencing up to a 45% increase), and FAR (reducing by up to 0.53). The most performance gain is attained through the combination of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) in an ensemble, resulting in a 0.78 AUC, 0.79 sensitivity, and a 0.22 false alarm rate. Furthermore, we analyzed model features with a game-theoretic approach illustrating the most correlated features for accurate prediction, revealing the attention of advanced convolution neural networks to occupancy features. This provided crucial insights into improving crash precaution, the findings from which not only benefit private stakeholders but also extend a promising opportunity for governmental intervention on the express lane. This work could promote express lane with more efficient resource allocation, real-time traffic management optimization, and high-risk area prioritization.

Keywords: Anomaly Detection; Deep Learning; Managed Lanes; Mobility; Real-time Crash Prediction; Traffic Safety.

MeSH terms

  • Accidents, Traffic* / prevention & control
  • Accidents, Traffic* / statistics & numerical data
  • Area Under Curve
  • Automobile Driving
  • Environment Design
  • Humans
  • Machine Learning
  • Neural Networks, Computer*