Change in brain activation after transcranial pulsed electromagnetic fields in treatment-resistant depression

Eur Arch Psychiatry Clin Neurosci. 2024 Apr 5. doi: 10.1007/s00406-024-01797-w. Online ahead of print.

Abstract

Background: Preliminary evidence suggests antidepressant effects of transcranial pulsed electromagnetic fields (tPEMF). However, the precise mechanism of action in the brain is still unknown. The aim of this study was to investigate the influence of tPEMF on brain activation in patients with treatment-resistant depression (TRD) by studying two processes that might be of particular interest in relation to the symptoms of depression: emotional processing and reward processing.

Methods: Eligible participants (n = 50) with TRD in this sham-controlled double-blind multicenter trial [registered at the Dutch Trial Register ( http://www.trialregister.nl ), NTR3702] were randomly assigned to five weeks daily active or sham tPEMF. Pre- and post-treatment functional MR-scans were made during which participants performed a social-emotional task and a reward task.

Results: Participants in the active treatment group showed a stronger decrease in activation post-treatment compared to sham during reward-outcome processing in the left inferior frontal gyrus and in a cluster comprising the right lingual gyrus and the posterior part of the middle temporal gyrus. No effect of tPEMF was found on activation during the social-emotional task. Neurostimulation with tPEMF did also not affect behavioral performance for both tasks.

Conclusions: We found a decrease in reward-related activation as a result of tPEMF stimulation, while no effect of tPEMF on social-emotional processing was found. The treatment-related reduction in activation of regulatory regions may reflect normalization and may have implications for anhedonia. These findings suggest that there is an effect of tPEMF on brain activation of relevant circuits, albeit in the absence of a clinical antidepressant effect.

Keywords: Depression; MDD; Reward-processing; TMS; fMRI; tPEMF.