Titanium dioxide-supported mercury photocatalysts for oxidative removal of hydrogen sulfide from the air using a portable air purification unit

J Hazard Mater. 2024 May 15:470:134089. doi: 10.1016/j.jhazmat.2024.134089. Epub 2024 Mar 21.

Abstract

Photocatalytic removal of gaseous hydrogen sulfide (H2S) has been studied through the control of key process variables using a prototype air purifier (AP) fabricated with titanium dioxide (TiO2)-supported mercury. The performance of Hg/TiO2 systems, prepared with different Hg mass proportions over TiO2 (such as 0.1%, 1%, 2%, and 5%), is measured against 5 ppm H2S at 160 L min-1 under UV irradiation. Accordingly, their removal efficiency (RE) values after 360 s are 40.3%, 74.8%, 99.3%, and 99.9%, respectively (relative to 33.5% of AP (TiO2)). An AP with a 2% Hg/TiO2 unit achieves a clean air delivery rate of 32 L min-1 with kinetic reaction rate (r (at 10% RE)) of 0.774 mmol h-1 g-1, quantum yield of 2.19E-02 molecules photon-1, and space-time yield of 1.46E-04 molecules photon-1 mg-1. The superior photocatalytic performance of Hg/TiO2 is supported by superoxide anion and hydroxyl radicals formed in dry air and humid nitrogen (N2) environments, respectively. A density functional theory simulation suggests that the presence of oxygen vacancies should promote the disparities in the electronic structure to subsequently affect the reaction pathways and energetics. The presence of moisture enhances the robust formation of a mercury-OH bond to favorably yield β-mercury sulfide from H2S.

Keywords: Air purification; Hydrogen sulfide; Mercury impregnation; Photocatalysis; Titanium dioxide.