Photo-Curable 3D Printing of Circularly Polarized Afterglow Metal-Organic Framework Monoliths

Adv Mater. 2024 Apr 5:e2313749. doi: 10.1002/adma.202313749. Online ahead of print.

Abstract

Developing coordination complexes (such as metal-organic frameworks, MOFs) with circularly polarized luminescence (CPL) is currently attracting tremendous attention and remains a significant challenge in achieving MOF with circularly polarized afterglow. Herein, MOFs-based circularly polarized afterglow is first reported by combining the chiral induction approach and tuning the afterglow times by using the auxiliary ligands regulation strategy. The obtained chiral R/S-ZnIDC, R/S-ZnIDC(bpy), and R/S-ZnIDC(bpe)(IDC = 1H-Imidazole-4,5-dicarboxylate, bpy = 4,4'-Bipyridine, bpe = trans-1,2-Bis(4-pyridyl) ethylene) containing a similar structure unit display different afterglow times with 3, 1, and <0.1 s respectively which attribute to that the longer auxiliary ligand hinders the energy transfer through the hydrogen bonding. The obtained chiral complexes reveal a strong chiral signal, obvious photoluminescence afterglow feature, and strong CPL performance (glum up to 3.7 × 10-2). Furthermore, the photo-curing 3D printing method is first proposed to prepare various chiral MOFs based monoliths from 2D patterns to 3D scaffolds for anti-counterfeiting and information encryption applications. This work not only develops chiral complexes monoliths by photo-curing 3D printing technique but opens a new strategy to achieve tunable CPL afterglow in optical applications.

Keywords: afterglow; chiral; circularly polarized luminescence; metal–organic frameworks (MOFs); photo‐curing 3D printing.