Predicting ischemic stroke patients' prognosis changes using machine learning in a nationwide stroke registry

Med Biol Eng Comput. 2024 Apr 5. doi: 10.1007/s11517-024-03073-4. Online ahead of print.

Abstract

Accurately predicting the prognosis of ischemic stroke patients after discharge is crucial for physicians to plan for long-term health care. Although previous studies have demonstrated that machine learning (ML) shows reasonably accurate stroke outcome predictions with limited datasets, to identify specific clinical features associated with prognosis changes after stroke that could aid physicians and patients in devising improved recovery care plans have been challenging. This study aimed to overcome these gaps by utilizing a large national stroke registry database to assess various prediction models that estimate how patients' prognosis changes over time with associated clinical factors. To properly evaluate the best predictive approaches currently available and avoid prejudice, this study employed three different prognosis prediction models including a statistical logistic regression model, commonly used clinical-based scores, and a latest high-performance ML-based XGBoost model. The study revealed that the XGBoost model outperformed other two traditional models, achieving an AUROC of 0.929 in predicting the prognosis changes of stroke patients followed for 3 months. In addition, the XGBoost model maintained remarkably high precision even when using only selected 20 most relevant clinical features compared to full clinical datasets used in the study. These selected features closely correlated with significant changes in clinical outcomes for stroke patients and showed to be effective for predicting prognosis changes after discharge, allowing physicians to make optimal decisions regarding their patients' recovery.

Keywords: Ischemic stroke; Machine learning; Nation-wide registry database; Prognosis changes; Risk factors.