LIKE EARLY STARVATION 1 interacts with amylopectin during starch biosynthesis

Plant Physiol. 2024 Apr 4:kiae193. doi: 10.1093/plphys/kiae193. Online ahead of print.

Abstract

Starch is the major energy storage compound in plants. Both transient starch and long-lasting storage starch accumulate in the form of insoluble, partly crystalline granules. The structure of these granules is related to the structure of the branched polymer amylopectin: linear chains of glucose units organized in double helices that align to form semi-crystalline lamellae, with branch points located in amorphous regions between them. EARLY STARVATION 1 (ESV1) and LIKE EARLY STARVATION 1 (LESV) proteins are involved in the maintenance of starch granule structure and in the phase transition of amylopectin, respectively, in Arabidopsis (Arabidopsis thaliana). These proteins contain a conserved tryptophan-rich C-terminal domain folded into an antiparallel β-sheet, likely responsible for binding of the proteins to starch, and different N-terminal domains whose structure and function are unknown. In this work, we combined biochemical and biophysical approaches to analyze the structures of LESV and ESV1 and their interactions with the different starch polyglucans. We determined that both proteins interact with amylopectin but not with amylose and that only LESV is capable of interacting with amylopectin during starch biosynthesis. While the C-terminal domain interacts with amylopectin in its semi-crystalline form, the N-terminal domain of LESV undergoes induced conformational changes that are probably involved in its specific function of mediating glucan phase transition. These results clarify the specific mechanism of action of these two proteins in the biosynthesis of starch granules.