Improved glycaemic control induced by evening activity breaks does not persist overnight amongst healthy adults: A randomized crossover trial

Diabetes Obes Metab. 2024 Apr 4. doi: 10.1111/dom.15589. Online ahead of print.

Abstract

Aims: To compare the effects of 4 hours of laboratory-based regular activity breaks (RABs) and prolonged sitting (SIT) on subsequent 48-h free-living interstitial glucose levels in a group of healthy adults.

Materials and methods: In this randomized crossover trial, participants completed two 4-h laboratory-based interventions commencing at ~5:00 pm: (1) SIT and (2) SIT interrupted with 3 min of body weight resistance exercise activity breaks every 30 min (RABs). Continuous glucose monitoring was performed during the intervention and for 48-h after, during which time participants returned to a free-living setting.

Results: Twenty-eight adults (female n = 20, mean ± SD age 25.5 ± 5.6 years, body mass index 29.2 ± 6.9 kg/m2) provided data for this analysis. During the intervention period, RABs lowered mean interstitial glucose by 8.3% (-0.47 mmol/L/4 h, 95% confidence interval [CI] -0.74 to -0.20; p = 0.001) and area under the curve (AUC) by 8.9% (-2.01 mmol/L/4 h, 95% CI -3.05 to -0.97; p < 0.001) compared to SIT. Measures of glycaemic variability were not significantly different during the intervention. There were no significant differences in mean glucose and AUC between conditions during the first nocturnal period and 24-h post intervention. When compared to SIT, RABs increased continuous overall net action of glucose at 1 h and SD glucose by 22% (0.18 mmol/L, 95% CI 0.03 to 0.29; p = 0.018) and 26% (95% CI 4.9 to 42.7; p = 0.019) in the first nocturnal period and by 10% (0.09 mmol/L, 95% CI 0.01, 0.17; p = 0.025) and 15% (95% CI 6.6 to 22.4; p = 0.001) in the 24-h post intervention period, respectively.

Conclusion: Performing activity breaks in the evening results in acute reductions in interstitial glucose concentrations; however, the magnitude of these changes is not maintained overnight or into the following 48 hours.

Keywords: continuous glucose monitoring (CGM); exercise intervention; randomized trial; real‐world evidence.